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Persistence in one-dimensional Ising models with parallel dynamics

G. I. Menorf and P. Ra
The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600 113, India

P. Shukld
Department of Physics, North Eastern Hill University, Shillong 793 022, India
(Received 4 April 2001; published 17 September 2001

We study persistence in one-dimensional ferromagnetic and antiferromagnetic nearest-neighbor Ising mod-
els with parallel dynamics. The probabiliB(t) that a given spin has not flipped up to tifyevhen the system
evolves from an initial random configuration, decays4s) ~ 1/t % with 0,=0.75 numerically. A mapping to
the dynamics of two decouplet+A— 0 models yields),= 3/4 exactly. A finite size scaling analysis clarifies
the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.
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Recent work on the phenomenon of “persistence” haswWithout loss of generality, we také=1 for ferromagnetic
revealed an unusughnd in many respects unexpedtedhy  interactions and= — 1 for the antiferromagnetic case. Each
in which an interacting many-body system, evolving in time,spin can take values 1 (up) or —1 (down). The zero tem-
retains memory of its initial stat¢l]. Consider a one- perature dynamics evolves a configuratfer(t)} at timet to
dimensional ferromagnetic Ising model with nearest-a configuratioo(t+ 1)} at timet+ 1 through the following
neighbor interactions, quenched from an initially rand@m  simple rule: For ferromagnetic interactions, each spin at time
finite temperaturgconfiguration and allowed to relax to its t+1 assumes the value of one of its neighboring spins at
global minimum energyzero temperatupeconfiguration, a time t, chosen from right or left with equal probability. For
state with either all spins up or all spins down. Suppose thantiferromagnetic interactions, the above rule is modified in
dynamics is serial, with an attempt to update a single spinhe following way: At timet+ 1, assign the value of each
being performed at each time step. Fix one spin and askspin to thenegativeof the value of one of its neighboring
What is the probability that this spin hamt flipped up to  spins, chosen from right or left with equal probability. Each
time t? This quantity, the persistence probability, was firstsuch step in time constitutes a single Monte Carlo step. The
found numerically to decay as parallel nature of the dynamics follows from the fact that all

spins are updated together.
1 We have simulated parallel dynamics using the above
P(t)~—-, (1) rules on Ising systems of linear site=10°-1¢ sites and
s for timest=<10°, applying periodic boundary conditions. We
average over a fairly large number of initial conditions, typi-
with 65 a nontrivial exponent(The subscript refers to serial cally 1?10 for the smaller latticesl(< 10%), starting from
dynamics) The numerical results suggestég~0.37[2]; a  configurations in which each spin is independently assigned
later analytical investigation deriveds=3/8 exactly[3].  a value 1 or—1 with equal probability. We compute the
Later studies have established rigorously that the persistenggandard persistence probabilR{L ,t), defined as the prob-
exponent is a different exponent characterizing the dynamab“ity that the spin at a given site in a system of dizhas
ics; it cannot be related to either the static exponerdsd?  not flipped up to time, averaged over all sites and over an
or the dynamical exponent[1]. ensemble of initial conditions. Fdr—o (in practice fort

This paper discusses the problem of persistence in the|7) p(L,t)—P(t).
context of one-dimensional Ising models with nearest- Figure 1 shows the persistence probabiftt) for a fer-
neighbor interactions evolving undparallel dynamics. We romagnetic Ising system of linear size=10°, evolving un-
qonsider both ferromggngtic and antiferromagnetic interacger parallel dynamicsP(t) exhibits a power law tail with an
tions, where the Hamiltonian has the form exponentd,~0.75. The behavior is identical for antiferro-
magnetic interactions. For comparison, the corresponding
plot for serial dynamics is shown on the same figure; the
exponent, as advertised, ég= 3/8 to within numerical reso-
lution. The exponents=3/8 is also obtained for antiferro-
magnetic interactions under serial dynamics. It is thus natural
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bors. Zero-field sites, on the other hand, have one neighbor
pointing up while the other points down. As a consequence,
flipping the spin at a zero-field site costs no energy.

These zero-field sites are the analogs, for parallel dynam-
ics, of domain walls in the ferromagnetic Ising model with
serial dynamics, in a sense that we make precise below.
Stable sites belong to domains that are either all up or all
down. A spin in the bulk of such a domain can only increase
its energy if it flips; it is thus not updated through the zero-

E temperature dynamics. Unstable sites, for the case of ferro-
magnetic interactions, are associated with an antiferromag-
netic arrangement of spins of the form . 10101010Q. . .,
where the notation “1” indicates an up spin and “0” indi-
cates a down spin. Note that all sites interior to such a region
will flip in the next time step. Within a region of unstable
sites, spin histories follow a two-cycle; each spin flips once
in each time step. Sites within such regions cannot contribute
to persistence, for they cannot be persistent beyond a single
‘ ‘ ‘ ‘ time step. It is obvious that persistence of spin configurations

10° 10’ 10° 10° 10* 10° 4t late times can only be associated with spins that lie deep

t within stable regions.
It is useful for the ensuing discussion to divide the one-

FIG. 1. The persistence probabili(t) in a one-dimensional dimensional lattice into two interpenetrating sublattices
Ising model plotted against tintein a logarithmic scale. The lower andB. For example, we may take all even-numbered sites as
curve (squarep is for parallel dynamics while the upper one forming the A sublattice and odd-numbered sites as consti-
(circles is for serial dynamics. The solid and the dashed lines fittectuting the B sublattice. The state of sublattide(B) at any
to these curves have slopes 0.75 and 0.375, respectively. The slopgge t is determined by the state of sublattiBgA) att—1.
remain the same if ferromagnetic interactions are replaced by antithe initial states of sublattices andB are uncorrelated with
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ferromagnetic interactions. each other.
We will argue below that the persistence of a $ien a
main walls separating spins with different orientations. Spingjiven sublattice at time$=1,3,5...,(2n+1) is deter-

located at domain walls have no preference for either orienmined by the configuration of zero-field sites on the other
tation. A given spin flips if it is crossed by a domain wall. sublattice, while at time$=2,4,6 ...,2m it is determined
Thus, persistence in this context is equivalent to the probby the configuration of zero-field sites on its own sublattice.
ability that a specified site has not been crossed by a domawvith this in mind, it is useful to distinguish zero-field sites
wall up to timet. If the domain walls in this problem are on sublatticeA from those on sublatticB. Call every zero-
interpreted as particles of typd, the following simple field site on theA sublattice anA particle and every zero-
reaction-diffusion scheme describes the motion and annihilafield site on theB sublattice, B particle, at timet=0. Figure
tion of domain walls:A+A—0, with particles diffusing at 2 illustrates a sequence of configurations at succeeding in-
each time step and annihilating on contp&t stants of time through which an initial state evolves. The
The problem of persistence with serial dynamics therlettersA andB indicate the positions of zero-field sites on the
translates simply into the following: Given a chosen site atA andB sublattices.
time t=0 and an initial configuration of\ particles, corre- Inspection of Fig. 2 leads to the following understanding.
sponding to domain walls in the initial configuration, what is Zero-field sites are located &f the interface between two
the probability that am particle has not crossed that site up stable regions, in which case this interface is composed of
to time t? Such a redefinition of the problem recasts thetwo adjacent zero-field sites—this is the case for the model
question in terms of the essential ingredients of the dynamwith serial dynamics in which cas particles represent the
ics, the motion and interaction of domain walls. It is naturalbound pair of zero-field sitegji) the interface between a
to look for the analog of such domain walls in the case ofstable and an unstable region, in which case there is a single
parallel dynamics to understand the conjectured relationshipero-field site, andjiii) the interface between two unstable
0p=3/4=20;. regions, in which case there is again a pair of adjacent zero-
Consider first the ferromagnetic case and divide configufield sites. The motion of zero-field sites corresponds to the
rations of spins into the following categories: unstable spinsexpansion/contraction of one or the other domain it sepa-
implying that they will definitely flip in the next time step, rates. Zero-field sites can also annihilate, leading to the coa-
stable spins, implying that they will not flip in the next time lescence and shrinkage of domains, as the system coarsens
step, and “zero-field” spins, which may or may not flip, under the dynamics.
with either possibility occurring with probability 1/2. An un- It is thus obvious that the nontrivial dynamics associated
stable spino; at sitei has both neighbors in the stateo; , with the persistence phenomenon can be associated only
while stable spins point in the same direction as their neighwith the zero-field sites, for such sites constitute the bound-
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aries between unstable and stable regions. It is also obviousfer to sequential dynamics, these results generalize trivially
that sites which are persistent until tirhean be associated to parallel dynamics. This is a consequence of the fact that
only with regions that are stable up to time.e., regions that particle moves are independent of each other in this model.
are stable at=0 but that are not crossed by a zero-field siteOnly the reaction itself, in which tw#é particles on the same
up to timet. The problem of persistence in the case of par-site annihilate each other, has different interpretations in par-
allel dynamics can thus be discussed precisely as in the seriallel and serial dynamics, but this ambiguity is easily re-
case, with the dynamics of the simple domain walls in themoved through a simple redefinition of the time and length
serial case being replaced by a somewhat more complex dgcales.
namics in the parallel case, which we deal with below. For the A+A—0 model, the density oA particles de-
We now establish the following crucial ingredient of this creases af5]
model which enables the exact calculationdgf, using the
known result for6s and the mapping onto the equivalent N(A)~ 112, 3
reaction-diffusion problem: Only particles of the same type
(A or B) can annihilate each other. They are transparent tdn the context of the Ising model with parallel dynamics, this
particles of the other type. Thus, the problem of the motiorresult implies thalN(A) andN(B) as defined above and at
of zero-field sites in this model reduces to the problem oftimest,t+2t+4,... areconserved modulo 2 and decay
two decoupled A-A—0 andB+B—0 models, with the ini- separatelyas 1tY? with a prefactor that depends on the
tial number ofA’s andB’s being set by the initial conditions. initial concentration. This result accords with results ob-
This is clearly evident from Fig. 2 if we look at the configu- tained for this model by Privmaj4]; we have checked this
rations at even or odd time steps and at even or odd latticeumerically as well. Also note the following: If we consider
sites. Our use of periodic boundary conditions implies thabnly the persistence of sites on a given sublattice, at only
N(A) and N(B) are always even, wherd(A) and N(B) even or odd time steps, i.et=0,24...,2n or t
represent the number of particles of typandB at any time. =1,3,5...,2m+1, this will decay asP(t)~ 148, reflect-
The single conservation law of thé+A—0 model, the ing the fact that this dynamics mapsactlyonto theA+ A
conservation of particle numb&i(A) mod 2, is replaced by —0 dynamics. This is consistent with our numerics.
two conservation laws in this model: niddi(A),2]=0 and We now use these results to argue the following. Con-
mod N(B),2]=0, whereN(A) andN(B) are the numbers of sider, for concreteness, the persistence of a spin omthe
A and B patrticles in any configuration of the model. It is sublattice at some timeafter the quench from infinite tem-
useful to note the following: while the properties convention-perature. The persistence probability is then simply the prob-
ally computed for the reaction-diffusion scheme- A—0 ability that the site in question has not been crossed b4 an

046102-3



G. I. MENON, P. RAY, AND P. SHUKLA PHYSICAL REVIEW E64 046102

particle up to timet or a B particle up to timet—1. Since 10°
these probabilities are independétite dynamics oA andB "\ \
particles decouplesthis joint probability is simply the prod- N\ 10
uct of the independent probabilities that the site is persistent N\
with respect to the motion of botA andB particles, imply- N 10' .

ing

10°

1 1 1
P(t)NtTISX—(t_l)SISNtCﬁ’W«’ (4)

LI.EP(t)

yielding the persistence exponent for parallel dynamics — L5
6par="3/4 exactly, consistent with the numerical data. 10 t:;gg

To test the validity of the mapping onto the two noninter- — — - L=500 \
acting species of particlesA(and B) outlined above, we —-— L=1000 oo
have simulated the associated reaction-diffusion model inde- .
pendently and computed, numerically, the analog of the per- AN
sistence probability for the Ising case. This is done by com- N
puting the probability that a given site is crossed by a particle  1¢° - - L N L ,
of neither type up to timé; the exponent obtained numeri- 10 10 10 10 10
cally tallies precisely with our result above. t/L?

How do these results generalize to the antiferromagnetic
Ising model with parallel dynamics? These results are unal- FIG. 3. Plot ofP(L,t)L%% vst/L? whereP(L,t) is the configu-
tered as a consequence of the following simple mapping ofation averaged density of persistent sites in a system ofLs&te
configurations: Replacing all spins on one sublattice, say thémet, z=2, andé,= 3/4, illustrating the validity of the dynamical
A sublattice, througHoa} — —{oa} changes the sign of the scaling ansatz. The inset shows the total number of persistent sites
exchange interactiod, mapping the problem with the new Np(L)=LP(L,t=2°) leftin the system as— o, plotted against the
variables onto the ferromagnetic problem. This gauge symsystem size on a logarithmic scale, for both paraligircles and
metry relates configurations pairwise; every update for théequential(squares dynamics. The straight lines fitted tc_J these
ferromagnetic case is an allowed update for the antiferroP0ints have slopes 0.5 and 0.25, respectivelgee text for discus-
magnet with the same weight. Thus none of the conclusion&°"-
here are altered and the persistence exponent is independent
of the sign of the exchange interactioh

Recently, there has been considerable interest in the spprocesses. Consider the set of sites persistent with respect to
tial scaling properties of persistenigl. Numerical work on  the motion ofA andB particles separately; each will form a
the one-dimensionah+A—0 model, which describes the fractal with the same fractal dimensiala. The intersection
Ising model withserial dynamics, shows the existence of a of these two fractals represents those sites persistent with
n.OntriVial' fractal StrUCt.Ure in the Spatial distribution of per- respect to the motion of botA and B partic|es_ Assuming
sistent sites at long times. These results can be recast {fjat A and B particles are initially uncorrelated, the dimen-

terms of a dynamical scaling form fét(L,t) [7]: sion of the intersection set is theml2-d=—0.5, as above.
We conclude that persistent sites in the parallel dynamics
P(L,t)=L"2%f(t/L?), (50  version of the Ising model daot exhibit spatial scaling of

the type seen in the serial version of the model, a result

wherez is the dynamic exponent ari{x)~x’ for x<1  corroborated by the work of Bray and O’Donoghiiéd and
while it is constant for large. One consequence of this form Manoj and Ray{7].
is that persistent sites at long times and for length sdales One implication of this result is that both the average
<t constitute a fractal with fractal dimensiah=d—z6, numberand average density of persistent sites in a system of
=0.25. We have user=2, valid for A+A—0 dynamics. sizeL shoulddecaywith L for parallel dynamics, in contrast

Does such structure exist for the parallel version of Isingto the serial case. We have verified this numerically; see the
persistence? Our data f&(L,t) are consistent with Eq5),  inset to Fig. 3(In contrast, the mass of a truly fractal object
with 6 replaced by, andz=2, as shown in the scaling plot increaseswith scale while its density decrease3hus, a
of Fig. 3. This illustrates the validity of the dynamical scal- large system has no persistent sites, at sufficiently long
ing ansatzfor persistence under parallel dynami@3ata col-  times, for most initial conditions. The power law tail of
lapse here is, however, inferior in comparison to the seriaP(L,t) is then associated with an ever smaller fractionl.as
case) Using the result of the previous paragraph, this wouldincreases, of initial states, whose associated persistent sites
indicate a fractal dimension of 0.5, a priori an unphysical survive for longer and longer times.
result. This result can be attributed to the fact that we are In conclusion, we have studied persistence in one-
looking at the persistence of a site under timdependent dimensional Ising models with parallel dynamics. We have

046102-4



PERSISTENCE IN ONE-DIMENSIONAL ISING MODES. .. PHYSICAL REVIEW E 64 046102

obtained the persistence exponépt= 3/4 exactly and stud- We thank G. Manoj, A. Dhar, D. Dhar, and M. Barma for

ied the spatiotemporal correlations of persistent sites. Theggseful discussions. The Associateship program at the Insti-
results relied on an exact mapping to the dynamics of twdute of Mathematical Sciences, Chennai facilitated discus-
decoupled A- A—0 models. It would be interesting to see if sions which led to this work. This research was supported in
similar arguments exist and are useful in the discussion gpart by the National Science Foundation under Grant No.

persistence with parallel dynamics in other models. PHY99-07949.
[1] For a recent review, see S.N. Majumdar, Curr. S@i, 370 bridge, 1997.
(1999. [5] D. Toussaint, and F. Wilczek, J. Chem. Phy8, 2642(1983;
[2] B. Derrida, A.J. Bray, and C. Godre'che, J. Phys2A L357 J. L. Spouge, Phys. Rev. Le&0, 871(1988.
(1994). [6] G. Manoj and P. Ray, J. Phys. 28, L109 (2000.
[3] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. L&8, [7] G. Manoj and P. Ray, Phys. Rev.@, 7755(2000.
751(1995. [8] A. J. Bray and S. J. O'Donoghue, Phys. Rev.6E 3366
[4] Nonequilibrium Statistical Mechanics in One Dimension (2000.

edited by V. Privman(Cambridge University Press, Cam-

046102-5



