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Persistence in one-dimensional Ising models with parallel dynamics
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We study persistence in one-dimensional ferromagnetic and antiferromagnetic nearest-neighbor Ising mod-
els with parallel dynamics. The probabilityP(t) that a given spin has not flipped up to timet, when the system
evolves from an initial random configuration, decays asP(t);1/tup with up.0.75 numerically. A mapping to
the dynamics of two decoupledA1A→0 models yieldsup53/4 exactly. A finite size scaling analysis clarifies
the nature of dynamical scaling in the distribution of persistent sites obtained under this dynamics.
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Recent work on the phenomenon of ‘‘persistence’’ h
revealed an unusual~and in many respects unexpected! way
in which an interacting many-body system, evolving in tim
retains memory of its initial state@1#. Consider a one-
dimensional ferromagnetic Ising model with neare
neighbor interactions, quenched from an initially random~in-
finite temperature! configuration and allowed to relax to it
global minimum energy~zero temperature! configuration, a
state with either all spins up or all spins down. Suppose
dynamics is serial, with an attempt to update a single s
being performed at each time step. Fix one spin and a
What is the probability that this spin hasnot flipped up to
time t? This quantity, the persistence probability, was fi
found numerically to decay as

P~ t !;
1

tus
, ~1!

with us a nontrivial exponent.~The subscript refers to seria
dynamics.! The numerical results suggestedus;0.37 @2#; a
later analytical investigation derivedus53/8 exactly @3#.
Later studies have established rigorously that the persist
exponent is a different exponent characterizing the dyn
ics; it cannot be related to either the static exponentsn andh
or the dynamical exponentz @1#.

This paper discusses the problem of persistence in
context of one-dimensional Ising models with neare
neighbor interactions evolving underparallel dynamics. We
consider both ferromagnetic and antiferromagnetic inter
tions, where the Hamiltonian has the form

H52J(
i

s is i 11 . ~2!
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Without loss of generality, we takeJ51 for ferromagnetic
interactions andJ521 for the antiferromagnetic case. Eac
spin can take values11 ~up! or 21 ~down!. The zero tem-
perature dynamics evolves a configuration$s(t)% at timet to
a configuration$s(t11)% at timet11 through the following
simple rule: For ferromagnetic interactions, each spin at ti
t11 assumes the value of one of its neighboring spins
time t, chosen from right or left with equal probability. Fo
antiferromagnetic interactions, the above rule is modified
the following way: At timet11, assign the value of eac
spin to thenegativeof the value of one of its neighboring
spins, chosen from right or left with equal probability. Ea
such step in time constitutes a single Monte Carlo step.
parallel nature of the dynamics follows from the fact that
spins are updated together.

We have simulated parallel dynamics using the abo
rules on Ising systems of linear sizeL5102–106 sites and
for timest<105, applying periodic boundary conditions. W
average over a fairly large number of initial conditions, typ
cally 102–103 for the smaller lattices (L,104), starting from
configurations in which each spin is independently assig
a value 1 or21 with equal probability. We compute th
standard persistence probabilityP(L,t), defined as the prob
ability that the spin at a given site in a system of sizeL has
not flipped up to timet, averaged over all sites and over a
ensemble of initial conditions. ForL→` ~in practice fort
!Lz), P(L,t)→P(t).

Figure 1 shows the persistence probabilityP(t) for a fer-
romagnetic Ising system of linear sizeL5106, evolving un-
der parallel dynamics.P(t) exhibits a power law tail with an
exponentup;0.75. The behavior is identical for antiferro
magnetic interactions. For comparison, the correspond
plot for serial dynamics is shown on the same figure;
exponent, as advertised, isus53/8 to within numerical reso-
lution. The exponentus53/8 is also obtained for antiferro
magnetic interactions under serial dynamics. It is thus nat
to guess thatup53/452us , and thatup as well asus remain
unaltered when ferromagnetic interactions are replaced
antiferromagnetic ones.

Coarsening in ferromagnetic Ising models with serial d
namics occurs through the motion and annihilation of d
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main walls separating spins with different orientations. Sp
located at domain walls have no preference for either or
tation. A given spin flips if it is crossed by a domain wa
Thus, persistence in this context is equivalent to the pr
ability that a specified site has not been crossed by a dom
wall up to time t. If the domain walls in this problem ar
interpreted as particles of typeA, the following simple
reaction-diffusion scheme describes the motion and annih
tion of domain walls:A1A→0, with particles diffusing at
each time step and annihilating on contact@4#.

The problem of persistence with serial dynamics th
translates simply into the following: Given a chosen site
time t50 and an initial configuration ofA particles, corre-
sponding to domain walls in the initial configuration, what
the probability that anA particle has not crossed that site u
to time t? Such a redefinition of the problem recasts
question in terms of the essential ingredients of the dyn
ics, the motion and interaction of domain walls. It is natu
to look for the analog of such domain walls in the case
parallel dynamics to understand the conjectured relation
up53/452us .

Consider first the ferromagnetic case and divide confi
rations of spins into the following categories: unstable sp
implying that they will definitely flip in the next time step
stable spins, implying that they will not flip in the next tim
step, and ‘‘zero-field’’ spins, which may or may not flip
with either possibility occurring with probability 1/2. An un
stable spins i at sitei has both neighbors in the state2s i ,
while stable spins point in the same direction as their nei

FIG. 1. The persistence probabilityP(t) in a one-dimensiona
Ising model plotted against timet in a logarithmic scale. The lowe
curve ~squares! is for parallel dynamics while the upper on
~circles! is for serial dynamics. The solid and the dashed lines fit
to these curves have slopes 0.75 and 0.375, respectively. The s
remain the same if ferromagnetic interactions are replaced by
ferromagnetic interactions.
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bors. Zero-field sites, on the other hand, have one neigh
pointing up while the other points down. As a consequen
flipping the spin at a zero-field site costs no energy.

These zero-field sites are the analogs, for parallel dyn
ics, of domain walls in the ferromagnetic Ising model wi
serial dynamics, in a sense that we make precise be
Stable sites belong to domains that are either all up or
down. A spin in the bulk of such a domain can only increa
its energy if it flips; it is thus not updated through the zer
temperature dynamics. Unstable sites, for the case of fe
magnetic interactions, are associated with an antiferrom
netic arrangement of spins of the form. . . 1010101010 . . . ,
where the notation ‘‘1’’ indicates an up spin and ‘‘0’’ indi
cates a down spin. Note that all sites interior to such a reg
will flip in the next time step. Within a region of unstab
sites, spin histories follow a two-cycle; each spin flips on
in each time step. Sites within such regions cannot contrib
to persistence, for they cannot be persistent beyond a si
time step. It is obvious that persistence of spin configurati
at late times can only be associated with spins that lie d
within stable regions.

It is useful for the ensuing discussion to divide the on
dimensional lattice into two interpenetrating sublatticesA
andB. For example, we may take all even-numbered sites
forming theA sublattice and odd-numbered sites as con
tuting theB sublattice. The state of sublatticeA ~B! at any
time t is determined by the state of sublatticeB ~A! at t21.
The initial states of sublatticesA andB are uncorrelated with
each other.

We will argue below that the persistence of a sitei on a
given sublattice at timest51,3,5, . . . ,(2m11) is deter-
mined by the configuration of zero-field sites on the oth
sublattice, while at timest52,4,6, . . . ,2m it is determined
by the configuration of zero-field sites on its own sublattic
With this in mind, it is useful to distinguish zero-field site
on sublatticeA from those on sublatticeB. Call every zero-
field site on theA sublattice anA particle and every zero
field site on theB sublattice, aB particle, at timet50. Figure
2 illustrates a sequence of configurations at succeeding
stants of time through which an initial state evolves. T
lettersA andB indicate the positions of zero-field sites on th
A andB sublattices.

Inspection of Fig. 2 leads to the following understandin
Zero-field sites are located at~i! the interface between two
stable regions, in which case this interface is composed
two adjacent zero-field sites—this is the case for the mo
with serial dynamics in which caseA particles represent the
bound pair of zero-field sites,~ii ! the interface between a
stable and an unstable region, in which case there is a si
zero-field site, and~iii ! the interface between two unstab
regions, in which case there is again a pair of adjacent z
field sites. The motion of zero-field sites corresponds to
expansion/contraction of one or the other domain it se
rates. Zero-field sites can also annihilate, leading to the c
lescence and shrinkage of domains, as the system coa
under the dynamics.

It is thus obvious that the nontrivial dynamics associa
with the persistence phenomenon can be associated
with the zero-field sites, for such sites constitute the bou
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PERSISTENCE IN ONE-DIMENSIONAL ISING MODELS . . . PHYSICAL REVIEW E 64 046102
FIG. 2. Time evolution of the
zero-field sites onA andB sublat-
tices: the configuration at the ea
liest time corresponds to the bo
tom row and each successive ro
is a later time step. Note thatA
and B particles as defined at an
given time step do not react with
each other. Only particles of the
same kind, i.e.,A or B, can anni-
hilate.
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aries between unstable and stable regions. It is also obv
that sites which are persistent until timet can be associate
only with regions that are stable up to timet, i.e., regions that
are stable att50 but that are not crossed by a zero-field s
up to timet. The problem of persistence in the case of p
allel dynamics can thus be discussed precisely as in the s
case, with the dynamics of the simple domain walls in
serial case being replaced by a somewhat more complex
namics in the parallel case, which we deal with below.

We now establish the following crucial ingredient of th
model which enables the exact calculation ofup , using the
known result forus and the mapping onto the equivale
reaction-diffusion problem: Only particles of the same ty
(A or B) can annihilate each other. They are transparen
particles of the other type. Thus, the problem of the mot
of zero-field sites in this model reduces to the problem
two decoupled A1A→0 andB1B→0 models, with the ini-
tial number ofA’s andB’s being set by the initial conditions
This is clearly evident from Fig. 2 if we look at the configu
rations at even or odd time steps and at even or odd la
sites. Our use of periodic boundary conditions implies t
N(A) and N(B) are always even, whereN(A) and N(B)
represent the number of particles of typeA andB at any time.

The single conservation law of theA1A→0 model, the
conservation of particle numberN(A) mod 2, is replaced by
two conservation laws in this model: mod@N(A),2#50 and
mod@N(B),2#50, whereN(A) andN(B) are the numbers o
A and B particles in any configuration of the model. It
useful to note the following: while the properties conventio
ally computed for the reaction-diffusion schemeA1A→0
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refer to sequential dynamics, these results generalize trivi
to parallel dynamics. This is a consequence of the fact
particle moves are independent of each other in this mo
Only the reaction itself, in which twoA particles on the same
site annihilate each other, has different interpretations in p
allel and serial dynamics, but this ambiguity is easily r
moved through a simple redefinition of the time and leng
scales.

For the A1A→0 model, the density ofA particles de-
creases as@5#

N~A!;1/t1/2. ~3!

In the context of the Ising model with parallel dynamics, th
result implies thatN(A) andN(B) as defined above and a
times t,t12,t14, . . . areconserved modulo 2 and deca
separatelyas 1/t1/2, with a prefactor that depends on th
initial concentration. This result accords with results o
tained for this model by Privman@4#; we have checked this
numerically as well. Also note the following: If we conside
only the persistence of sites on a given sublattice, at o
even or odd time steps, i.e.,t50,2,4, . . . ,2m or t
51,3,5, . . . ,2m11, this will decay asP(t);1/t3/8, reflect-
ing the fact that this dynamics mapsexactlyonto theA1A
→0 dynamics. This is consistent with our numerics.

We now use these results to argue the following. Co
sider, for concreteness, the persistence of a spin on thA
sublattice at some timet after the quench from infinite tem
perature. The persistence probability is then simply the pr
ability that the site in question has not been crossed by aA
2-3
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G. I. MENON, P. RAY, AND P. SHUKLA PHYSICAL REVIEW E64 046102
particle up to timet or a B particle up to timet21. Since
these probabilities are independent~the dynamics ofA andB
particles decouples!, this joint probability is simply the prod-
uct of the independent probabilities that the site is persis
with respect to the motion of bothA andB particles, imply-
ing

P~ t !;
1

t3/8
3

1

~ t21!3/8
;

1

t3/4
, ~4!

yielding the persistence exponent for parallel dynam
upar53/4 exactly, consistent with the numerical data.

To test the validity of the mapping onto the two noninte
acting species of particles (A and B) outlined above, we
have simulated the associated reaction-diffusion model in
pendently and computed, numerically, the analog of the p
sistence probability for the Ising case. This is done by co
puting the probability that a given site is crossed by a part
of neither type up to timet; the exponent obtained numer
cally tallies precisely with our result above.

How do these results generalize to the antiferromagn
Ising model with parallel dynamics? These results are u
tered as a consequence of the following simple mapping
configurations: Replacing all spins on one sublattice, say
A sublattice, through$sA%→2$sA% changes the sign of th
exchange interactionJ, mapping the problem with the new
variables onto the ferromagnetic problem. This gauge s
metry relates configurations pairwise; every update for
ferromagnetic case is an allowed update for the antife
magnet with the same weight. Thus none of the conclusi
here are altered and the persistence exponent is indepe
of the sign of the exchange interactionJ.

Recently, there has been considerable interest in the
tial scaling properties of persistence@6#. Numerical work on
the one-dimensionalA1A→0 model, which describes th
Ising model withserial dynamics, shows the existence of
nontrivial fractal structure in the spatial distribution of pe
sistent sites at long times. These results can be reca
terms of a dynamical scaling form forP(L,t) @7#:

P~L,t !5L2zusf ~ t/Lz!, ~5!

wherez is the dynamic exponent andf (x);x2us for x!1
while it is constant for largex. One consequence of this form
is that persistent sites at long times and for length scall
!t1/z constitute a fractal with fractal dimensiondf5d2zus
50.25. We have usedz52, valid for A1A→0 dynamics.

Does such structure exist for the parallel version of Is
persistence? Our data forP(L,t) are consistent with Eq.~5!,
with us replaced byup andz.2, as shown in the scaling plo
of Fig. 3. This illustrates the validity of the dynamical sca
ing ansatzfor persistence under parallel dynamics.~Data col-
lapse here is, however, inferior in comparison to the se
case.! Using the result of the previous paragraph, this wo
indicate a fractal dimension of20.5, a priori an unphysical
result. This result can be attributed to the fact that we
looking at the persistence of a site under twoindependent
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processes. Consider the set of sites persistent with respe
the motion ofA andB particles separately; each will form
fractal with the same fractal dimensiondf . The intersection
of these two fractals represents those sites persistent
respect to the motion of bothA and B particles. Assuming
that A and B particles are initially uncorrelated, the dimen
sion of the intersection set is then 2df2d520.5, as above.
We conclude that persistent sites in the parallel dynam
version of the Ising model donot exhibit spatial scaling of
the type seen in the serial version of the model, a re
corroborated by the work of Bray and O’Donoghue@8# and
Manoj and Ray@7#.

One implication of this result is that both the avera
numberand average density of persistent sites in a system
sizeL shoulddecaywith L for parallel dynamics, in contras
to the serial case. We have verified this numerically; see
inset to Fig. 3.~In contrast, the mass of a truly fractal obje
increaseswith scale while its density decreases.! Thus, a
large system has no persistent sites, at sufficiently lo
times, for most initial conditions. The power law tail o
P(L,t) is then associated with an ever smaller fraction, aL
increases, of initial states, whose associated persistent
survive for longer and longer times.

In conclusion, we have studied persistence in o
dimensional Ising models with parallel dynamics. We ha

FIG. 3. Plot ofP(L,t)Lzup vs t/Lz, whereP(L,t) is the configu-
ration averaged density of persistent sites in a system of sizeL at
time t, z52, andup53/4, illustrating the validity of the dynamica
scaling ansatz. The inset shows the total number of persistent
Np(L)5LP(L,t5`) left in the system ast→`, plotted against the
system sizeL on a logarithmic scale, for both parallel~circles! and
sequential~squares! dynamics. The straight lines fitted to thes
points have slopes20.5 and 0.25, respectively~see text for discus-
sion!.
2-4
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obtained the persistence exponentup53/4 exactly and stud-
ied the spatiotemporal correlations of persistent sites. Th
results relied on an exact mapping to the dynamics of
decoupled A1A→0 models. It would be interesting to see
similar arguments exist and are useful in the discussion
persistence with parallel dynamics in other models.
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